
ENGINEERING TOMORROW

Selection Guide | VLT® Midi Drive FC 280

Flexible. Communicative. Easy to use.

..fits your application

Access your true high-efficiency potential...

Reach new levels of performance with the VLT® Midi Drive FC 280, the evolution of the popular VLT® 2800 drive. Profit from new savings, with a wide range of features designed to make installing, using and maintaining the AC drive as simple and as easy as possible. Just set it and forget it.

For precise and efficient motor control for machine builders in the food and beverage, material handling and processing industries, the VLT® Midi Drive is ideal. It is strong on control performance, functional safety, and flexible fieldbus communication.

The right mix of features ensures the AC drive suits your task, whether for conveyor systems, mixers, and packaging systems or driving pumps, fans and compressors.

With all-pluggable connectors, integrated DC choke, RFI filter, and dual-channel STO functional safety, the drive is easy to use and there are no hidden extras.

The VLT® Midi Drive provides

- Easy and fast installation and set-up
- Savings on cost and space
- Flexibility to suit your task

...giving you the freedom to achieve your system goals.

Set and forget

Built on the success and experience of more than 45 years in the drives field, the VLT® Midi Drive shares the same technical heritage represented by the VLT® name in AC drives.

Easy retrofit

VLT® Midi Drive is prepared for compatibility with the VLT® 2800, for a fast, streamlined retrofit.

Therefore you can rely on the same low-maintenance robustness and reliability – once you have set it, it will run reliably, earning you energy savings for years on end.

Freedom from extra components

- With integrated DC choke for harmonics mitigation there are no additional component costs.
- The built-in RFI disconnect switch minimizes leakage current and optimizes safe operation on IT mains – as standard.

■ VLT Midi Drive is designed to operate at 45-50°C ambient temperature at full load and 55°C with derating. This capability means that there is no need to install extra cooling equipment or oversize the drive.

These integrated features save you overdimensioning, additional purchases and save space too, delivering cost savings to your project.

Compact design for easy installation

The compact design, and side by side mounting with zero clearance between the drives, make it simpler to optimize panel space.

Flexible. Easy to use.

Easy retrofit

VLT® Midi Drive is prepared for compatibility with the VLT® 2800. Its exterior dimensions, cable plugs, cable lengths, and set-up software tools enable easy retrofit in established plant or machinery concepts.

Service friendly

The VLT® Memory Module MCM 102 facilitates helpful implementation of factory settings for OEM and machine builders, fast installation of firmware updates, and easy commissioning or exchange of drives – a first for VLT® drives.

Simply use your PC to copy the drive settings from one VLT® Memory Module to another.

Save time on set-up

Numeric or graphical LCP

Easy parameter set-up makes the path to energy savings both short and simple, via an enhanced numeric LCP or graphical control panel that supports six languages.

Targeted 'Application Selections' make it easy for users to set up and

VLT® Motion Control Tool MCT 10

commission typical applications.

Configure and monitor the FC 280 with Danfoss' own VLT® Motion Control Tool MCT 10 software. This tool provides plant managers with a comprehensive overview over the system at any point in time and a high level of flexibility in configuration and monitoring. There is even a USB port enabling fast PC connection for commissioning and troubleshooting.

All-pluggable

Pluggable terminals make this the easiest wiring task imaginable for installation and service – simply plug in and plug out for mains, RS485, I/O, and motor connections.

Features and benefits

Feature	Benefit							
Integrated harmonics and EMC design	<u>'</u>							
Integrated DC choke	Saves installation time and panel space requirements Improves power supply quality and helps extend DC capacitor lifetime							
Integrated EMC filter	- Avoids malfunction and improves reliability of surrounding components							
RFI switch	Operates safely on IT mains Trouble-free operation of insulation monitoring relay							
Easy to install and set up								
Pluggable terminals	– Fast installation and unit exchange							
Memory module (option)	- Convenient transfer of parameter set-up - Easy firmware updates - Easy and fast commissioning							
Memory module programmer	 Convenient transfer files to and from the VLT® Memory Module MCM 102 via PC 							
Enhanced numerical LCP (option)	– Cost effective user interface							
Adapter for graphical LCP supporting many languages (option)	Easy set-up in one of six main languagesFast troubleshooting							
USB port	 Easy PC connection for troubleshooting or commissioning No need for adapter or PC-USB driver 							
Application set-up wizards	– Easy commissioning							
Strategic design for applications, safety, and motor control								
Integrated Safe Torque Off (STO), dual channel	Eliminates external components Enables reliable functional safety							
Control algorithm runs both induction and PM motors	– Freedom to choose the best high-efficiency motor for the task							
Integrated brake chopper for 3-phase drives in power sizes up to 22 kW	– No cost for external braking chopper							
Side-by-side or horizontal mounting, without derating	- Saves panel space and cost							
Operates at up to 45 °C without derating	 Saves cost for external cooling and reduces downtime for overtemperature failures 							

Fits your application

This drive delivers ease of use and high performance in food and beverage industries, material handling, and processing industries.

The right mix of features is the key to optimizing performance for your task, for

Conveyor systems

Release the conveyor from mechanical stress via controlled acceleration and deceleration - promoting longer life and lower operating costs.

Mixers

Upgrade from VLT® 2800, free of redesign – the VLT® Midi Drive fits perfectly. Even upgrade to the highefficiency motor of your choice - VLT® Midi Drive is compatible.

Packaging systems

Profit from compact size and integrated harmonics mitigation, with STO to comply with industrial machine standards.

Pumps

Benefit from reliable operation together with integrated EMC filter and harmonics mitigation.

Fans

Achieve up to 50% energy savings by a 20% reduction in fan speed, and save on carbon emissions too

Compressors

Enjoy built-in functional safety and the fieldbus protocol of your choice, whilst optimizing performance coefficient.

Integrated DC choke reduces harmonics

Designed to meet industrial needs

Choose the VLT® Midi Drive, whatever your task is. A broad range of fieldbus options suits protocol standards of many different industries. International certification includes CE and UL.

Because it's compatible with both induction and PM motors, you also win the freedom to choose the best high-efficiency motor for your task.

See the interactive presentation and video at www.danfoss.com/fc280

Integrated DC chokes

■ Integrated DC chokes reduce harmonics to less than 48% THDi.

Integrated brake chopper

■ A built-in brake chopper for 3-phase drives in the whole power range saves money and panel space.

Pulse input as speed reference

■ FC 280 offers the capability to convert pulse input as a speed reference, avoiding the need to purchase an analog signal module for the PLC.

Integrated PID controller

■ The bulit-in PID conroller ensures solid process control, such as constant pressure or constant flow operation.

Integrated RFI filter

■ Built-in filters not only save space, but also eliminate extra costs for fitting, wiring and material. The integrated RFI filter improves power supply quality, avoiding malfunction and improving the reliability of surrounding components.

Coated PCBs

■ The printed circuit boards (PCB) are coated as standard according to 3C3 (IEC 60721-3-3) classification against corrosive gases. This protection provides high reliability in harsh environments, preventing failures and unnecessary downtime increasing lifetime of the drive.

Reliable back-up concept

■ External 24 V back-up option for power supply, to keep fieldbus communication on, while disconnected from mains.

Communicative

Easy connectivity

For convenient PC connection during commissioning or service, use the integrated USB port.

Your choice of fieldbus

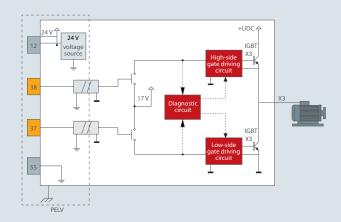
Communicate using your choice of process automation protocols:

- CANopen
- PROFIBUS
- PROFINET with dual port
- EtherNet/IP with dual port
- Modbus

Adaptive

PM motor compatibility

■ You win the freedom to choose the best high-efficiency motor for your application. The VLT® Midi Drive provides highly efficient permanent magnet (PM) motor control in open loop under VVC+ in the whole power range.



Safe

Dual-channel Safe Torque Off

The Safe Torque Off (STO) function is a component in a safety control system. STO prevents the unit from generating the energy that is required to rotate the motor, which ensures safe conditions in emergency situations. The dual-channel STO function in the VLT® Midi Drive is designed and approved suitable for the requirements of:

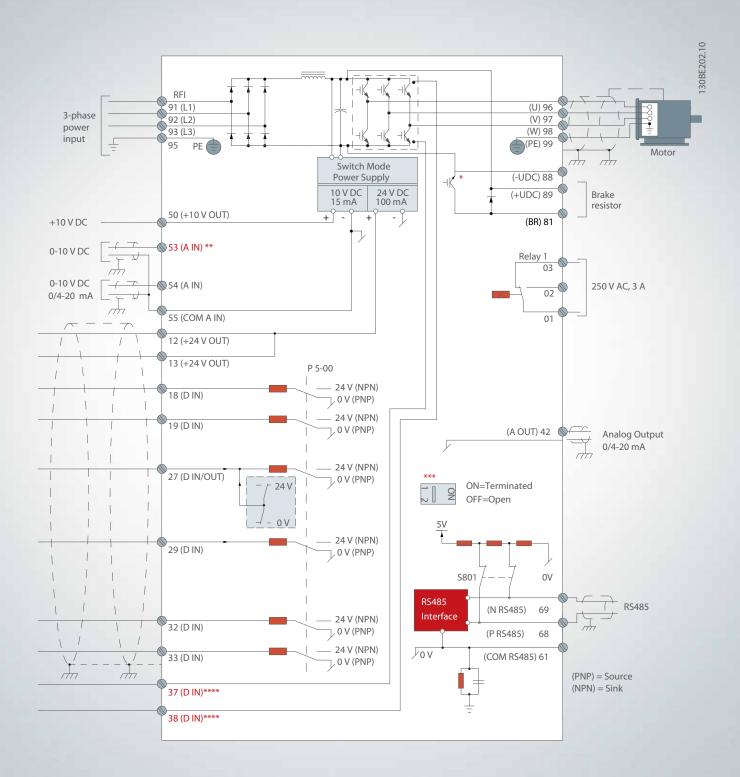
- IEC/EN 61508: 2010 SIL 2 ■ IEC/EN 61800-5-2: 2007 SIL2 ■ IEC/EN 62061: 2005 SILCL of SIL2
- EN ISO 13849-1: 2008 Category 3 PLd

Specifications

Mains supply (L1, L2, L3)	
Supply voltage	200-240 V (-15%/+10%) 380-480 V (-15%/+10%)
Supply frequency	50/60 Hz
Displacement power factor (cos φ)	Near unity (> 0.98)
Switching frequency on input supply L1, L2, L3	Switching maximum 2 times/ minute
Output data (U, V, W)	
Output voltage	0-100% of supply voltage
Switching on output	Unlimited
Ramp times	0.01-3600 s
Frequency range	0-500 Hz
Programmable digital inputs and	outputs
Digital inputs / digital outputs*	6 (7) / 1
Logic	PNP or NPN
Voltage level	0-24 V DC
Voltage level	

*Note: One digital input can	be configured as pulse output
------------------------------	-------------------------------

Pulse and encoder inputs							
Pulse inputs/encoder inputs**	2/2						
Voltage level	0-24 V DC						
**Note: Two digital inputs can be configu Two digital inputs can be configured as e							
Programmable analog inputs							
Analog inputs	2						
Modes	1 voltage or current / 1 current or DI						
Voltage level	0 V to +10 V (scaleable)						
Current level	0/4 to 20 mA (scaleable)						
Programmable analog outputs							
Analog outputs	1						
Current range at analog output	0/4 to 20 mA						
Programmable relay outputs							
Relay outputs	1						
Approvals							
Approvals	CE, UL listed, cUL, TÛV						



Wiring schematic

VLT® Midi Drive FC 280

A=Analog, D=Digital

- Built-in brake chopper is only available on 3-phase units.
- Terminal 53 can also be used as digital input.
- *** Switch S801 (bus terminal) can be used to enable termination on the RS485 port (terminals 68 and 69).
- **** Refer to the Operating Instructions, chapter 6 Safe Torque Off (STO) for the correct STO wiring.

Electric data

VLT® Midi Drive FC 280 3 x 380-480 V AC

Enclosure IP20		K1									
Enclosure 1F20		HK37	HK55	HK75	H1K1	H1K5	H2K2	Н3К0			
Typical shaft output	[kW]	0.37	0.55	0.75	1.1	1.5	2.2	3			
Output current											
Continuous (3 x 380-440 V)	[A]	1.2	1.7	2.2	3	3.7	5.3	7.2			
Continuous (3 x 441-480 V)	[A]	1.1	1.6	2.1	2.8	3.4	4.8	6.3			
Intermittent (60 s overload)	[A]	1.9	2.7	3.5	4.8	6.0	8.5	11.5			
Output power											
Continuous (400 V AC)	[kVA]	0.8	1.2	1.5	2.1	2.6	3.7	5.0			
Continuous (480 V AC) [kVA]		0.9	1.3	1.7	2.5	2.8	4.0	5.2			
Maximum input current											
Continuous (3 x 380-440 V)	[A]	1.2	1.6	2.1	2.6	3.5	4.7	6.3			
Continuous (3 x 441-480 V)	[A]	1.0	1.2	1.8	2.0	2.9	3.9	4.3			
Intermittent (60 s overload)	[A]	1.9	2.6	3.4	4.2	5.6	7.5	10.1			
Additional specifications											
Max. cable cross-section Mains, motor, brake and load sharing	[mm ²] (AWG)				4 (12)						
Estimated power loss at rated maximum load 1)	[W]	20.9	25.2	30.01	40.01	53	74.0	94.8			
Efficiency ²⁾		96.2	97.0	97.2	97.4	97.4	97.6	97.5			
Weight											
IP20	[kg]			2.3			2.5	3.6			

Frederica IR20		K2		К3	K	(4	K5		
Enclosure IP20		H4K0	H5K5	H7K5	H11K	H15K	H18K	H22K	
Typical shaft output	[kW]	4	5.5	7.5	11	15	18.5	22	
Output current									
Continuous (3 x 380-440 V)	[A]	9	12	15.5	23	31	37	42.5	
Continuous (3 x 441-480 V)	[A]	8.2	11	14	21	27	34	40	
Intermittent (60 s overload)	[A]	14.4	19.2	24.8	34.5	46.5	55.5	63.8	
Output power									
Continuous (400 V AC)	[kVA]	6.2	8.3	10.7	15.9	21.5	25.6	29.5	
Continuous (480 V AC)	[kVA]	6.8	9.1	11.6	17.5	22.4	28.3	33.3	
Maximum input current									
Continuous (3 x 380-440 V)	[A]	8.3	11.2	15.1	22.1	29.9	35.2	41.5	
Continuous (3 x 441-480 V)	[A]	6.8	9.4	12.6	18.4	24.7	29.3	34.6	
Intermittent (60 s overload)	[A]	13.3	17.9	24.2	33.2	44.9	52.8	62.3	
Additional specifications									
Max. cable cross-section Mains, motor, brake and load sharing	[mm²] (AWG)		4 (12)			16	(6)		
Estimated power loss at rated maximum load 1)	[W]	115.5	157.5	192.8	289.5	393.4	402.8	467.5	
Efficiency ²⁾		97.6	97.7	98.0	97.8	97.8	98.1	97.9	
Weight									
IP20	[kg]	3.6	3.6	4.1	9.4	9.5	12.3	12.5	

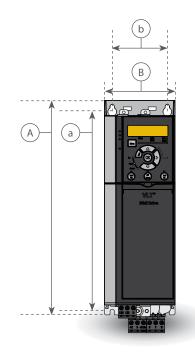
Mains supply 3 x 380-480 V AC

The typical power loss is stated at nominal load conditions and expected to be within ±15% (tolerence relates to variations in voltage and cable conditions).

Values are based on a typical motor efficiency (IE2/EB borderline). Motors with lower eliciency add to the power loss in the AC drive and motors with high efficiency reduce power loss.

Applies for dimensioning of AC drive cooling. If the switching frequency is higher than the default setting, the power losses may rise. LCP and typical control card power consumptions are included. Further options and customer load may add up to 30 W to the losses (though typical only 4 W extra for a fully-loaded control card or fieldbus).

For power loss data according to EN 5059-2, refer to www.danfoss.com/vitenergyefficience progressions.


Measured using 50 m screened motor cables at rated load and rated frequency. For energy efficiency class, see the Operating Instructions, chapter 9.4 Ambient Conditions.

For part load losses, see www.danfoss.com/vitenergyefficiency.

Ordering typecode

Please beware that not all combinations are possible. Get help to configure your AC drive using the online configurator at: driveconfig.danfoss.com

Dimensions

Enclosure			K1					K2			К3	K4		K5	
	Single-phase 200-240 V	0.37	0.55	0.75	1.1	1.	5	2.2							
Power size [kW]	3-phase 200-240 V	0.37	0.55	0.75	1.1	1.	5		2.2		3.7				
	3-phase 380-480 V	0.37	0.55	0.75	1.1	1.5	2.2	3	4	5.5	7.5	11	15	18.5	22
	Height A	210						272.5			272.5	320		410	
Dimensions [mm]	75						90			115	135		150		
[]	Depth C	168							168		168	245		245	
	a	198					260			260	297.5		390		
	60						70			90	105		120		
Mounting	Mounting ^c 5				5			6.4			6.5	8		7.8	
holes	d	9						11			11	12	2.4	12	2.6
	e	4.5						5.5			5.5	6.	.8	7	7
	7.3						8.1			9.2	11		11.2		

Integrated Fieldbuses

Available for the full product range

Fieldbus

PROFIBUS DP V1

CANopen

PROFINET with dual port

EtherNet/IP with dual port

Modbus RTU

PROFIBUS DP

Operating the AC drive via a fieldbus enables you to reduce the cost of your system, communicate faster and more efficiently, and benefit from an easier user interface.

PROFIBUS DP provides:

- Wide compatibility, a high level of availability, support for major PLC vendors, and compatibility with future versions
- Fast, efficient communication, transparent installation, advanced diagnosis and parameterization and auto-configuration of process data via GSD-file

 Acyclic parameterization using
- PRÓFIBUS DP-V1, PROFIdrive or Danfoss FC profile state machines, PROFIBUS DP-V1, Master Class 1 and 2

CANopen

High flexibility and low cost are two of the "cornerstones" for CANopen. The CANopen variant is fully equipped with both high priority access to control and status of the AC drive (PDO Communication) and access to all parameters through acyclic data (SDO Com-

For interoperability the option has implemented the DSP402 AC drive profile. This all guarantees standardized handling, interoperability and low cost.

PROFINET

PROFINET uniquely combines the highest performance with the highest degree of openness. The PROFINET variant gives the user access to the power of Ethernet. It is designed so that many of the features from PROFIBUS can be reused, minimizing user effort to migrate PROFINET, and securing the investment in PLC

Other features:
■ Support of DP-V1 Diagnostic allows easy, fast and standardized handling of warning and fault information into the PLC, improving bandwidth in the system

PROFINET encompasses a suite of messages and services for a variety of manufacturing automation applications.

EtherNet/IP

Ethernet is the future standard for communication at the factory floor. EtherNet/IP is based on the newest technology available for industrial use and handles even the most demanding requirements. EtherNet/IP extends commercial off-the-shelf Ethernet to the Common Industrial Protocol (CIP™) – the same upper-layer protocol and object model found in DeviceNet.

Advanced features:

- Built-in high performance switch enabling line-topology, and eliminating the need for external switches
- Advanced switch and diagnosis functions
- Unicast and Multicast communication

Modbus RTU

The Modbus RTU protocol is based on the integrated RS485 (EIA-485) interface on the

RS485 is a two-wire bus-interface that allows multi-drop network topology. Danfoss uses the two-wire system where the communication between master and slave is half-duplex, meaning it cannot transmit and receive at the

According to the EIA-485 specification:

- A total of 32 nodes can be connected to one Modbus RTU network segment
- A total of 247 nodes in a network are
- Network segments are divided with repeaters

Accessories

VLT® Control Panel LCP 21 (Numeric) Ordering number: 132B0254

VLT® Control Panel LCP Blind Cover Ordering number: 132B0262

VLT® Control Panel LCP 102 (Graphical) Ordering number: 130B1107

LCP Panel Mounting Kit **Ordering number for IP20 enclosure** 130B1117: (Graphical) with fasteners, gasket and without LCP and with 3 m cable 132B0102: (Numerical) with fasteners, gasket and without LCP and with 3 m cable

Graphical LCP Adapter Ordering number: 132B0281

Power Options*

VLT® Sine-Wave Filter MCC 101

VLT® dU/dt Filter MCC 102

VLT® Brake Resistors MCE 101

Accessories

VLT® Memory Module MCM 102 **Ordering number:** Available Q2-2016

IP21/Type 1 conversion kit Ordering number: 132B0335: K1 132B0336: K2 132B0337: K3 132B0338: K4 132B0338: K4

132B0339: K5

Type 1 (NEMA) cable entry cover Ordering number: 13280340: K1 13280341: K2

132B0342: K3 132B0343: K4

132B0344: K5

Mounting adapter

Ordering number:
132B0363: Adapter Plate, VLT2800 size A
132B0364: Adapter Plate, VLT2800 size B
132B0365: Adapter Plate, VLT2800 size C 132B0366: Adapter Plate, VLT2800 size D

*Ordering number: See relevant Design Guide

Danfoss Drives

Danfoss Drives is a world leader in variable speed control of electric motors. We aim to prove to you that a better tomorrow is driven by drives. It is as simple and as ambitious as that.

We offer you unparalleled competitive edge through quality, applicationoptimized products targeting your needs – and a comprehensive range of product lifecycle services.

You can rely on us to share your goals. Striving for the best possible performance in your applications is our focus. We achieve this by providing the innovative products and application know-how required to optimize efficiency, enhance usability, and reduce complexity.

From supplying individual drive components to planning and delivering complete drive systems; our experts are ready to support you all the way.

We draw on decades of experience within industries that include:

- Chemical
- Cranes and Hoists
- Food and Beverage
- HVAC
- Lifts and Escalators
- Marine and Offshore
- Material Handling
- Mining and Minerals
- Oil and Gas
- **Packaging**
- Pulp and Paper
- Refrigeration
- Water and Wastewater
- Wind

You will find it easy to do business with us. Online, and locally in more than 50 countries, our experts are never far away, reacting fast when you need them.

Since 1968, we have been pioneers in the drives business. In 2014, Vacon and Danfoss merged, forming one of the largest companies in the industry. Our AC drives can adapt to any motor technology and we supply products in a power range from 0.18 kW to 5.3 MW.

VLT°| VAGON°

Danfoss Drives, Ulsnaes 1, DK-6300 Graasten, Denmark, Tel. +45 74 88 22 22, Fax +45 74 65 25 80, www.danfoss.com/drives, E-mail: info@danfoss.com

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed.

All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.