

Avda. Castell de Barberà, 16 Pol. Ind. Santiga 08210 BARBERÀ DEL VALLÈS Tel. 93 719 29 20 Fax 93 719 29 21

motronic@motronic.es www.motronic.es

Informe nº. 20201231

Cliente:

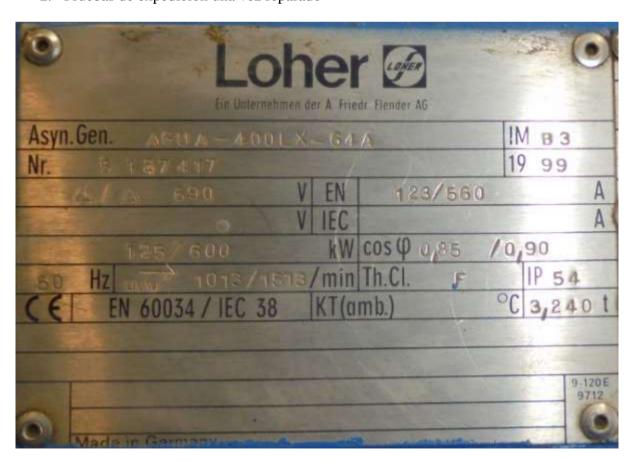
Un cliente

A/A. Sr.

Barberà del Vallès, 04 de Junio de 2020.

ASUNTO:

Informe: Reparación generador asíncrono


LOHER TIPO AGUA-400 LX-64 A N.º serie:

125/600 KW. 1013/1513 rpm D/D 690V/690V- 123/560 A

Muy señores nuestros,

Atendiendo a lo acordado nos, complace presentarles el informe completo de la reparación del generador de referencia:

- 1. Pruebas de primera inspección y diagnóstico del generador de referencia averiado.
- 2. Pruebas de expedición una vez reparado

1º Inspección

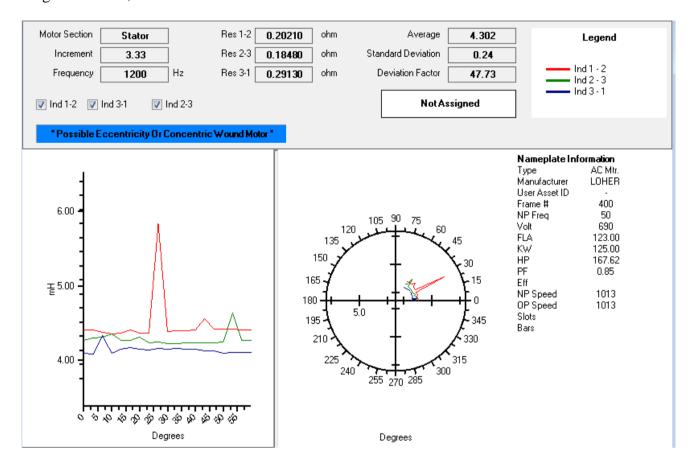
Verificación de bobinados prueba estándar de PDMA

Bobinado 4 polos, con desequilibrio de resistencias del orden de 9,7 % y de inductancias de un 63,04%, lo cual indica espiras en cortocircuito y también fundidas, en dos fases, los valores de resistencia de la fase 1-2, es superior al valor nominal, en las dos otras dos fases, lo que implica corta-circuito, espiras fundidas de la bobina afectada.

El aislamiento a tierra del bobinado de cuatro polos es de directo a tierra franca, con 0Ω de polímetro.

El bobinado de 6 polos es de 0,07% de desequilibrio de resistencia y un desequilibrio de inductancias del 3, 56 %, por influencia del bobinado afectado el de cuatro polos.

La avería ha sido de fallo de aislamiento en el interior de ranura, del bobinado de cuatro polos apunta a por fallo a tierra.


1500rpm (4 polos)

1000 rpm (6 polos)

	Α		Α
Test Date	04/14/20	Test Date	04/14/20
Test Time	9:07 AM	Test Time	9:17 AM
Test Location	Not Assigned	Test Location	Not Assigned
User	Administrator	User	Administrator
Tester Serial	5171	Tester Serial	5171
MTAP ID		MTAPID	
Frequency	1200	Frequency	1200
Charge Time	600	Charge Time	60
Voltage	1000	Voltage	1000
Motor Temp	40	Motor Temp	17
Measured Mohm	0.00	Measured Mohm	6276.17
Corrected Mohm	N/C	Corrected Mohm	1300.00
pF Ph 1 to Ground	78500	pF Ph 1 to Ground	57100
ohm Ph 1 to 2	0.01077	ohm Ph 1 to 2	0.1394
ohm Ph 2 to 3	0.01178	ohm Ph 2 to 3	0.1392
ohm Ph 3 to 1	0.01300	ohm Ph 3 to 1	0.1393
mH Ph 1 to 2	0.170	mH Ph 1 to 2	4.405
mH Ph 2 to 3	0.595	mH Ph 2 to 3	4.110
mH Ph 3 to 1	0.615	mH Ph 3 to 1	4.270
Average Inductance	0.460	Average Inductance	4.260
% Res. Imbalance	9.70	% Res. Imbalance	0.07
% Ind. Imbalance	63.04	% Ind. Imbalance	3.56

Verificación rotor:

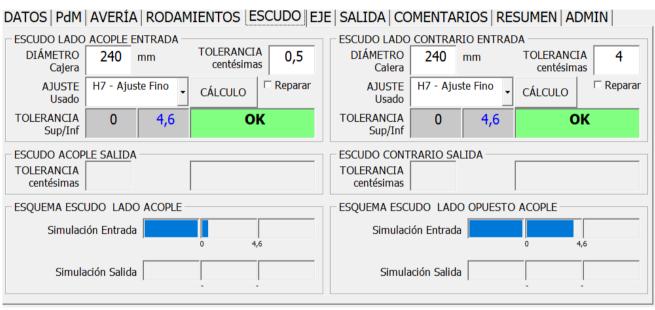
Se emplea el bobinado de 6 polos para efectuar la verificación del rotor, todo y que se muestran las tres fases con diferencias de inductancias, por la influencia del bobinado afectado a consecuencia de la influencia del corta-circuito de las espiras del bobinado, presenta una variación estándar del 0,24%, lo que nos indica que el rotor es de baja influencia, pero una desviación del factor del 47,73%, no podemos asegurar el rotor, hasta finalizado el bobinado.

El proceso de reparación es el rebobinado total del estator, operaciones auxiliares completas

Eléctricas

- 1. Quemado el bobinado antiguo en horno de pirolisis a temperatura controlada, se desbobina y se adecua toda la chapa magnética del estator.
- 2. Saneado de la chapa magnetica
- 3. Confección de bobinas.
- 4. Rebobinado
- 5. Test de Surge e Hipot previo al barnizado
- 6. Barnizado al vació
- 7. Pruebas de Surge tester y Hipot, después de barnizado

Mecánicas:


- 1. Verificación de tolerancias de ajustes, de alojamientos de rodamientos en escudos tapas y en cuellos eje.
- 2. Encasquillado del escudo tapa del lado opuesto al acople
- 3. Repaso de equilibrado dinámico del rotor
- 4. Revisión del motor-ventilador, cambio de rodamientos 1x (6306 2ZC3), 1x (6206 C3)
- 5. Montaje del conjunto motor-principal con cambio de rodamientos 2 x (6322-C3)

Pruebas de expedición:

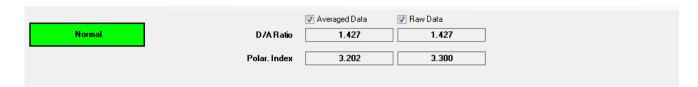

- 1. PDMA.
- 2. Surge tester
- 3. Rodaje en vacío, con medición de vibraciones
- 4. Verificación de auxiliares

Acabado y pintura

Verificación mecánica:

Tolerancias alojamiento rodamientos en los escudos tapa, ambos son correctos

Tolerancia del cuello eje del lado NDE (opuesto acople, es por encima, se ajusta en el montaje)


Pruebas de expedición:

Prueba estándar

1500 rpm (4 Polos) 1000 rpm (6 Polos)

_	Α		Α	
Test Date	05/22/20	Test Date	05/22/20	
Test Time	5:56 AM	Test Time	6:34 AM	
Test Location	Not Assigned	Test Location	Not Assigned	
User	Administrator	User	Administrator	
Tester Serial	5171	Tester Serial	5171	
MTAP ID		MTAP ID		
	Baseline		Baseline	
Frequency	1200	Frequency	1200	
Charge Time	60	Charge Time	60	
Voltage	1000	Voltage	1000	
Motor Temp	22	Motor Temp	22	
Measured Mohm	17734.96	Measured Mohm	21580.70	
Corrected Mohm	5100.00	Corrected Mohm	6200.00	
pF Ph 1 to Ground	93900	pF Ph 1 to Ground	80700	
ohm Ph 1 to 2	0.00929	ohm Ph 1 to 2	0.1270	
ohm Ph 2 to 3	0.00933	ohm Ph 2 to 3	0.1270	
ohm Ph 3 to 1	0.00928	ohm Ph 3 to 1	0.1269	
mH Ph 1 to 2	0.800	mH Ph 1 to 2	4.330	
mH Ph 2 to 3	0.805	mH Ph 2 to 3	4.325	
mH Ph 3 to 1	0.800	mH Ph 3 to 1	4.290	
Average Inductance	0.800	Average Inductance	4.315	
% Res. Imbalance	0.32	% Res. Imbalance	0.05	
% Ind. Imbalance 0.42		% Ind. Imbalance	0.58	

Prueba de calidad aislamiento Polarización:

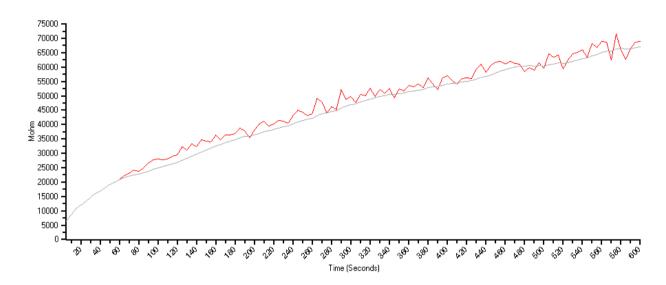


Gráfico 1 Polarización bobinado 4 polos

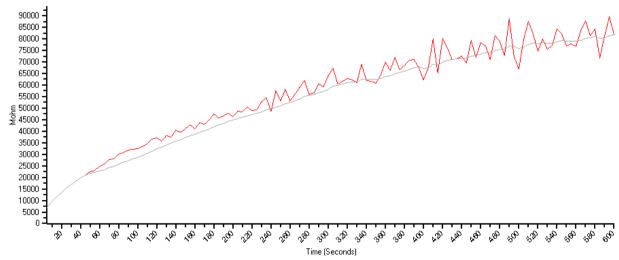


Gráfico 2 Polarización bobinado 6 polos

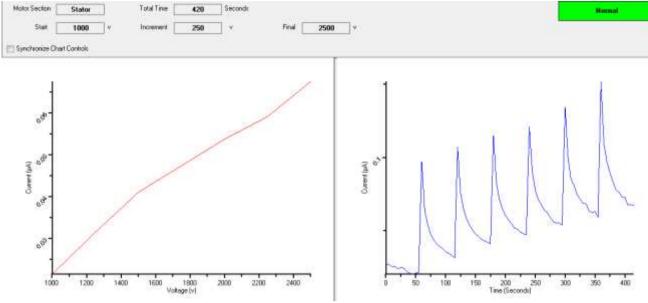


Gráfico 3 Prueba de tensión por pasos de los 500 V, hasta los 2500 V, con saltos de 250 V, obtenidos en el bobinado de 4 polos.

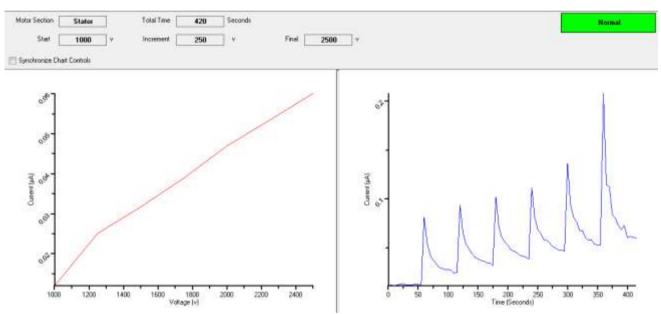


Gráfico 4 Prueba de tensión por pasos de los 500 V, hasta los 2500 V, con saltos de 250 V, obtenidos en el bobinado de 6 polos.

Resultado de las pruebas de aislamiento entre fases y espiras, surge tester

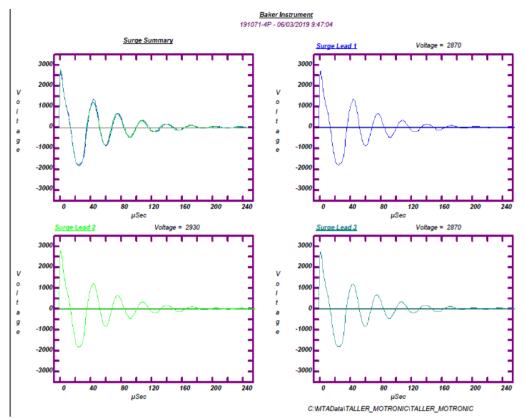


Gráfico 5 Resultado de la prueba de surge a 2850 V en el bobinado de cuatro polos, con resultado favorables

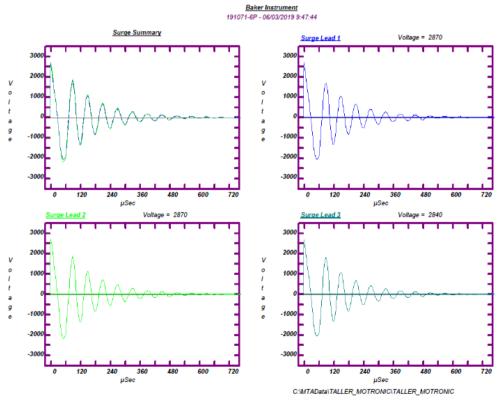


Gráfico 6 Resultado de la prueba de surge a 2850 V en el bobinado de seis polos, con resultado favorables

Prueba de influencia del rotor:

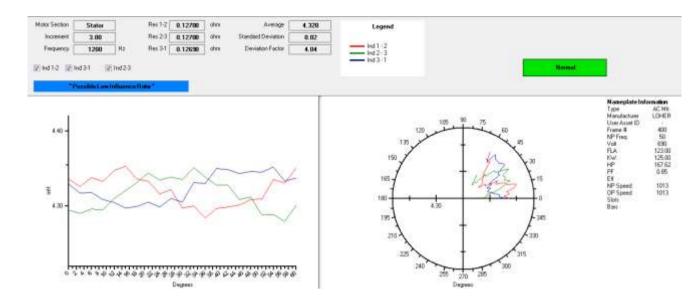


Gráfico 7 Resultado de la prueba de influencia del rotor, donde se obtiene un resultado de rotor de baja influencia, lo que nos valida la buena condición del rotor.

Rodaje en vacio como motor a 500 V

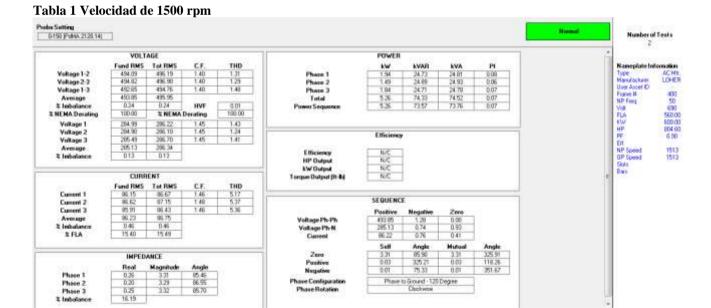


Tabla 2 Velocidad de 1000 rpm

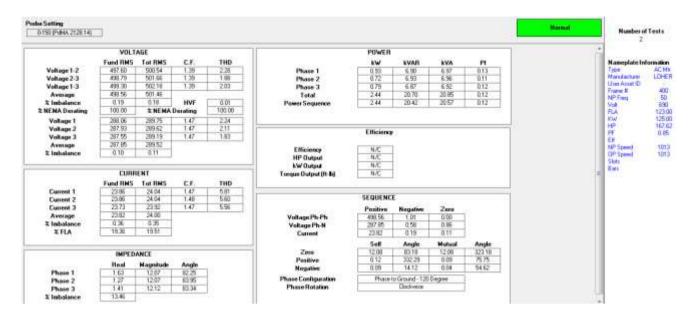
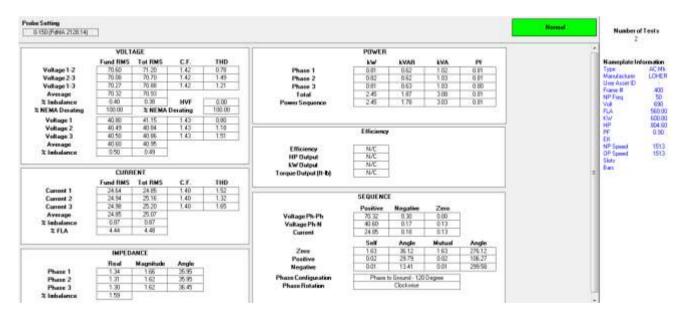



Tabla 3 Velocidad de 1500 rpm a tensión reducida a fin de obtener un factor de potencia cercano al de carga y poder efectuar la valoración del rotor dinámica

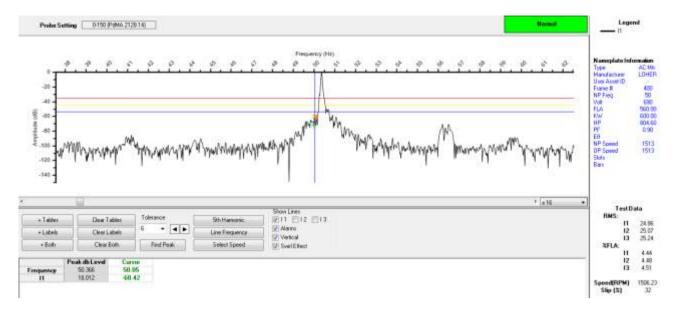


Gráfico 8 Resultado de la valoración de las bandas laterales de paso de polo a fin de valorar la condición del rotor dinámicamente, obteniendo un valor de -60,42 dB, condición de excelente

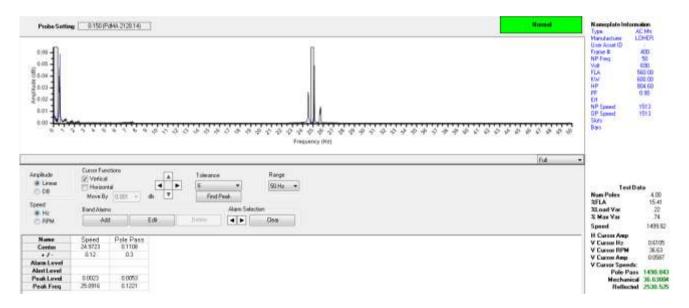


Gráfico 9 resultado de la valoración de la condición del rotor por la demodulación 0,0587 A ratio obtenida. 24,85/0,0587= 423, moderado.

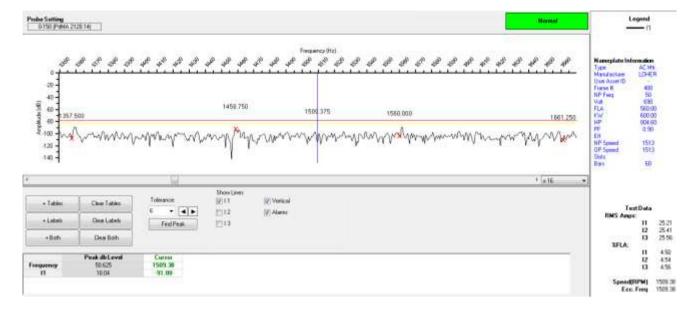


Gráfico 10 Valoración de la condición del entrehierro, no existe patrón de excentricidad, ni estática ni dinámica

Control de vibraciones a la expedición

1.-Rodando a 1500 rpm

TABLA DE VALORES GLOBALES

- Valores de SPM (Shock Pulse Meter) de ambos rodamientos en la última lectura. [dB]
- Valores de Aceleración de Vibración RMS en ambos rodamientos según IEC60034-14 Tabla 1. [m/s2]
- Valores de Velocidad de Vibración RMS en 5 direcciones según IEC60034-14 Tabla 1. [mm/s]

MOTRONIC / CLIENTES / ELECTRONICA ARA:

Clase	Unidad	Punto de medición	Tarea	Valor	Valor -1	Umbral	Nivel +1	%
22/05/20	RPM=1507	LOAD=0,00						
	20201231 (1513)	Rodamiento LA	SPM (dBm)	-5			25	
			SPM (dBc)	-5			10	
			RMSa (RMS)	0,46			4,00	
		Vertical LA	RMSv (2,00s) (RMS)	1,10			2,20	
		Horizontal LA	RMSv (2,00s) (RMS)	0,87			2,20	
		Axial LA	RMSv (2,00s) (RMS)	0,18			2,20	
		Rodamiento LOA	SPM (dBm)	19			25	
			SPM (dBc)	-3			10	
			RMSa (RMS)	0,45			4,00	
		Vertical LOA	RMSv (2,00s) (RMS)	0,86			2,20	
		Horizontal LOA	RMSv (2.00s) (RMS)	0.72			2.20	

Máquina(s): 1 Localización de medicion(es): 7

Resultado todos los parámetros de vibración acorde a norma IEC 60034-14 dentro de categoria B, la mas restriciva, apoyado sobre base elastica, establece.

Los parámetros de los rodamientos con 0,46 m/s²y 0,45 m/s², de energia de aceleración, cumplen perfectamente la norma que establece a tal valor como 2,8m/s², tambien en clase B la mas restrictiva

2.- Rodando a 1000 rpm

TABLA DE VALORES GLOBALES

- Valores de SPM (Shock Pulse Meter) de ambos rodamientos en la última lectura. [dB]
- Valores de Aceleración de Vibración RMS en ambos rodamientos según IEC60034-14 Tabla 1. [m/s2]
- Valores de Velocidad de Vibración RMS en 5 direcciones según IEC60034-14 Tabla 1. [mm/s]

MOTRONIC / CLIENTES / ELECTRONICA ARA:

Clase	Unidad	Punto de medición	Tarea	Valor	Valor -1	Umbral	Nivel +1	%
22/05/20	RPM=1004	LOAD=0,00						
	20201231(1013)	Rodamiento LA	SPM (dBm)	10			25	
			SPM (dBc)	-2			10	
			RMSa (RMS)	0,28			4,00	
		Vertical LA	RMSv (2,00s) (RMS)	0,37			2,20	
		Horizontal LA	RMSv (2,00s) (RMS)	0,31			2,20	
		Axial LA	RMSv (2,00s) (RMS)	0,19			2,20	
		Rodamiento LOA	SPM (dBm)	22			25	
			SPM (dBc)	-2			10	
			RMSa (RMS)	0,32			4,00	
		Vertical LOA	RMSv (2,00s) (RMS)	0,22			2,20	
		Horizontal LOA	RMSv (2,00s) (RMS)	0,23			2,20	

Máquina(s): 1 Localización de medicion(es): 7

Resultado todos los parámetros de vibración acorde a norma IEC 60034-14 dentro de categoría B, la más restrictiva, apoyado sobre base elástica, establece.

Los parámetros de los rodamientos con 0,28 m/s²y 0,32 m/s², de energía de aceleración, cumplen perfectamente la norma que establece a tal valor como 2,8m/s², también en clase B la más restrictiva

Imagen 1 Motor terminado listo para expedición

Esperando, les hayamos sido merecedores de vuestra satisfacción, estamos a su disposición para cualquier consulta o aclaración que deseen efectuarnos al respecto. Atentamente,